(x^2-16x+64)/(x^3-18x^2+80x)

Simple and best practice solution for (x^2-16x+64)/(x^3-18x^2+80x) equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for (x^2-16x+64)/(x^3-18x^2+80x) equation:


D( x )

x^3-(18*x^2)+80*x = 0

x^3-(18*x^2)+80*x = 0

x^3-(18*x^2)+80*x = 0

x^3-18*x^2+80*x = 0

x^3-18*x^2+80*x = 0

x*(x^2-18*x+80) = 0

x^2-18*x+80 = 0

DELTA = (-18)^2-(1*4*80)

DELTA = 4

DELTA > 0

x = (4^(1/2)+18)/(1*2) or x = (18-4^(1/2))/(1*2)

x = 10 or x = 8

x = 0

x = 0

x in (-oo:0) U (0:8) U (8:10) U (10:+oo)

(x^2-(16*x)+64)/(x^3-(18*x^2)+80*x) = 0

(x^2-16*x+64)/(x^3-18*x^2+80*x) = 0

x^2-16*x+64 = 0

x^2-16*x+64 = 0

DELTA = (-16)^2-(1*4*64)

DELTA = 0

x = 16/(1*2)

x = 8 or x = 8

(x-8)^2 = 0

x^3-18*x^2+80*x = 0

x*(x^2-18*x+80) = 0

x^2-18*x+80 = 0

DELTA = (-18)^2-(1*4*80)

DELTA = 4

DELTA > 0

x = (4^(1/2)+18)/(1*2) or x = (18-4^(1/2))/(1*2)

x = 10 or x = 8

x*(x-8)*(x-10) = 0

((x-8)^2)/(x*(x-8)*(x-10)) = 0

x-8 = 0 // + 8

x = 8

x in { 8}

x belongs to the empty set

See similar equations:

| p+6.5p=36 | | 2d-15=-1 | | 375=14x(-17) | | -5+2x+2(x-5)=33 | | 4.5m=12 | | 6=x2/3 | | 7g*2h-11h-16hg*2+4gh= | | 3/4y=9/16 | | m+5n=6 | | 5/3+10/3y=3y-4 | | 36x^2-14x=0 | | 149.95=5x+18.05 | | (3x+2)/2=x-5 | | 0.4(x+3)=0.3(x-6) | | 1.5c=8 | | -6=s-3 | | x/8+x+5=13/40 | | (6-x^2)=0 | | -7z+12=20z+8-1/3z | | 12+3.1y=-59.3 | | 10z+10=2 | | 2(3x-9)=36 | | (2-x^2)=0 | | 90(10+5)/(6-5) | | 72.16=2x+15.62 | | 3a+a-2+5a+7=50 | | 74(43x+3)=875 | | -(-x+3)=5x+5-4x | | raiz(2+3x)=8 | | 2x-3+x-4=3(x-6) | | 3[8x]+8=80 | | 7(x+1)=2x+56 |

Equations solver categories